1 - PORTATE DI CORRENTE Iz (in A) IN REGIME PERMANENTE NEI CONDUTTORI E NEI CAVI POSATI IN ARIA E IN TERRA, IN Cu e AI (IEC 364 - 5 - 523)

TAB. 1.1

DESCRIZIONE DEI SISTEMI DI POSA DEI CAVI IN ARIA E INTERRATI (più comuni)								
Α		- uni ⁽¹⁾ -multipolari in tubo sotto parete isolante - unipolari ⁽¹⁾ in tubo in cu- nicolo chiuso o sotto modanatura (7)						
В		- unipolari ⁽¹⁾ in tubo o in canalette a giorno, in tubo in cunicoli yentilati - uni-multipolari in tubo sotto intonaco (8)						
С		- uni-multipolari in cuni- coli aperti o ventilati - uni-multipolari a parete, a pavimento o a sof- fitto (7)						
D		uni-multipolari in tubo o in cunicolo interrato o direttamente interrati (9)						
E	F &	unipolari adiacenti o bi- tripolari in aria libera (passerelle ⁽²⁾ , mensole o sospesi a funi portanti) (10)						

TAB, 1.2

Portate di corre	ente Iz	(in A)	per ca	vi in Cu	- Posa	non r	avvicin	ata ⁽³⁾	Ta : 3	80 °C (8	aria) terra)	4102-7	4
Sistema di posa (TAB. 1)		Numero di conduttori attivi ⁽⁴⁾ e tipo di isolamento ⁽⁵⁾											
A	3 PVC	2 PVC	-	3 XLPE	2 XLPE	-	-	-	-	-	-	-	-
В	-	-	3 PVC	2 PVC	3 XLPE	-	2 XLPE	-	-	-	-	-	-
С	-	-	-	3 PVC	2 PVC	3 XLPE	-	2 XLPE	-	-	_	_	-
D	-	-	-	-	-	1	-	-	-	2 PVC	3 PVC	2 XLPE	3 XLPE
E		_	-	-	3 PVC	2 PVC	3 XLPE	-	2 XLPE	-	-	 0	-
Sezione (mm²) Rame		44	1				10	40	04	40	145	01	17
1	10.5	11	12	13.5			18	19	21	18	14.5		
1.5	13	14.5	15.5	17	18.5	22	23	24	26	22	18	26	22
2.5	18	19.5	21	23	25	30	32	33	36	29	24	34	29
4	24	26	28	31	34	40	42	45	49	38	31	44	37
6	31	34	36	40	43	52	54	58	63	47	39	56	46
10	42	46	50	54	60	71	75	80	86	63	52	73	61
16	56	61	68	73	80	96	100	107	115	81	67	95	79
25	73	80	89	95	101	119	127	138	149	104	86	121	101
35				117	126	147	157	171	185	125	103	146	122
50				141	153	179	192	210	225	148	122	173	144
70				179	196	229	246	269	289	183	151	213	178
95				216	238	278	298	328	352	216	179	252	211
120				249	276	322	346	382	410	246	203	287	240
150				285	318	371	399	441	473	278	230	324	271
185				324	362	424	456	506	542	312	257	363	304
240				380	424	500	538	599	641	360	297	419	351
300				435	496	576	620	693	741	407	336	474	396

Note: (1) senza guaina, cioè praticamente solo con il rivestimento isolante

(2) valido per passerelle perforate; per passerelle non perforate (superficie dei fori < 30% del totale) le portate vanno diminuite del 5%

 (3) per posa non ravvicinata si intende che i cavi hanno una distanza tra loro > 2D (diametro del cavo maggiore)

(4) in questo ambito per conduttore attivo si intende ogni conduttore percorso dalla corrente durante il servizio normale. Ad es., in un circuito trifase equilibrato il neutro non deve essere considerato come conduttore attivo.

(5) PVC: polivinilcloruro (temperatura limite di esercizio 70 °C) XLPE: polietilene reticolato (temperatura limite di esercizio 90 °C). Per posa alle basse temperature seguire le istruzioni del costruttore di cavi.

(6) per cavi in Al moltiplicare i valori di portata della TAB. 1.2 per K₀ = 0,78.

(7) N° max. di cavi posati: 20 con sezione max. di 300 mm² ciascuno.

(8) N° max. di cavi posati: 20 con sezione max. di 120 mm² ciascuno.

(9) Nº max. di cavi posati: 6 con sezione max. di 300 mm² ciascuno.

(10) N° max. di cavi posati: 27 con sezione max. di 300 mm² ciascuno.

ABB SACE ABB Elettrocondutture

2 - POSA RAVVICINATA

Nel caso di più circuiti tra loro vicini, i valori di portata forniti dalla TAB. 1.2 vanno moltiplicati per i seguenti fattori di correzione:

TAB. 2.1

Fattori di	correzi	one K	per p	osa ra	vvicina	ta in a	ria			
* '	Numero di circuiti o cavi multipolari									
Tipo di posa	1	2	3	4	6	9	12	15	20	
Incassata o racchiusa	1.00	0.80	0.70	0.70	0.55	0.50	0.45	0.40	0.40	
Singolo strato su muro, pavimento o passerella non ventilata	1.00	0.85	0.80	0.75	0.70	0.70	-	-	-	
Singolo strato a soffitto	0.95	0.80	0.70	0.70	0.65	0.60	-	-	-	
Singolo strato su passerella ventilata orizzontale o verticale	1.00	0.90	0.80	0.75	0.75	0.70	-	_	-	
Singolo strato su mensole	1.00	0.85	0.80	0.80	0.80	0.80	_	_	_	

TAB. 2.3

		Distar	nza tra i cav	i (a)▲	
Numero dei		Distai	iza tra r car	(a)	
circuiti	Nulla	Un diame- tro di cavo	0.125 m	0,25 m	0.5 m
2	0.75	0.80	0.85	0.90	0.90
3	0.65	0.70	0.75	0.80	0.85
4	0.60	0.60	0.70	0.75	. 0.80
5	0.55	0.55	0.65	0.70	0.80
6	0.50	0.55	0.60	0.70	0.80

▲ Cavi multipolari:

▲ Cavi unipolari:

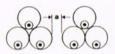
TAB. 2.2

Fattori di correzione \mathbf{K}_3 per posa ravvicinata in tubi interrati

A. - Cavi multipolari

	Distanza tra i cavi (a)* (m)							
Numero di cavi	Nulla	0.25	0.5	1.0				
2	0.85	0.90	0.95	0.95				
3	0.75	0.85	0.90	0.95				
4	0.70	0.80	0.85	0.90				
5	0.65	0.80	0.85	0.90				
6	0.60	0.80	0.80	0.90				

B. - Cavi unipolari


Numero di circuiti	Distanza tra i cavi (a)** (m)							
unipolari di 2 o 3 cavi	Nulla	0.25	0.5	1.0				
2	0.80	0.90	0.90	0.95				
2	0.70	0.80	0.85	0.90				
4	0.65	0.75	0.80	0.90				
5	0.60	0.70	0.80	0.90				
6	0.60	0.70	0.80	0.90				

Cavi multipolari

** Cavi unipolari

3 - TEMPERATURA AMBIENTE

TAB. 3.1

Fattori di correzione K4 della portata per pose in aria. Temperatura ambiente diversa da 30 °C

Temperatura ambiente (°C)	PVC	XLPE e EPF
10	1.22	1.15
15	1.17	1.12
20	1.12	1.08
25	1.06	1.04
35	0.94	0.96
40	0.87	0.91
45	0.79	0.87
50	0.71	0.82
55	0.61	0.76
60	0.50	0.71
65	_	0.65

TAB. 3.2

Fattori di correzione K5 della portata per pose

Temperatura del terreno (°C)	I terreno PVC	
10	1.10	1.07
15	1.05	1.04
25	0.95	0.96
30	0.89	0.93
35	0.84	0.89
40	0.77	0.85
45	0.71	0.80
50	0.63	0.76
55	0.55	0.71
60	0.45	0.65
65	_	0.60

4

ESEMPI APPLICATIVI

4.1

Trovare: Iz con cavo multipolare di sezione 120 mm² a 3 conduttori in Cu- Isolamento: XLPE - Ta = 40°C - Posa C (v. tab. 1.1) - Posa ravvicinata di nº 4 cavi su singolo strato a soffitto (v. tab. 2.1). Da tab. 1.2 si ha Iz (a 30°C) = 322 A - K, per Ta = 40°C (v. tab. 3.1) = 0,91 - K_1 per posa ravv. (v. tab. 2.2) = 0.70. Si ha: $Iz = 322 \times 0.91 \times 0.70 = 205 A$

4.2

Trovare: sezione minima per conduttore Al con Iz = 110A - Cavo multipolare a 3 conduttori - Isolam.: PVC - Ta = 50°C - Posa E (v. tab. 1.1) - Posa ravvicinata di nº 6 cavi in singolo strato su passerella ventilata. Si ha:

 K_4 per Ta = 50° (v. tab. 3.1) = 0.71 - K_1 (v. tab. 2.1) = 0.75 - fattore per cavo in Al (v. nota 6 pag. precedente) = 0.78 = 265 A:

I2 corretta = -0.71 × 0,75 × 0,78

Sez. min. (v. tab. 1.2) = 120 mm^2

5 - VALORI DI RESISTENZA, REATTANZA E CADUTE DI TENSIONE IN C.A. PER CAVI IN Cu

TAB. 5.1

		C	avi u	nipola	ri		Cavi bipolari				Cavi tripolari				
Sezione	Resi-	Reat-		CADUTE DI Δ		E	Resi-	Reat-		DI TENS. U	Resi-	Reat-		DI TENS.	Sezione
nominale	stenza R	tanza X		Corrente	alternata	190	stenza R	tanza X	Corrente alternata		stenza R	tanza X		alternata	nominale
	ad 80 °C	^	mon	ofase	trif	ase	ad 80 °C	^	mon	ofase	ad 80°C	^	trif	ase	
			cosφ 1	cosφ 0,8	cosφ 1	cosφ 0,8			cosφ 1	cosφ 0,8			cosφ 1	cosφ 0,8	
mm ²	Ω/km	Ω/km	mV/Am	mV/Am	mV/Am	mV/Am	Ω/km	Ω/km	mV/Am	mV/Am	Ω/km	Ω/km	mV/Am	mV/Am	mm ²
1	22,1	0,176	44,2	35,6	38,3	30,8	22,5	0,125	45,0	36,1	22,5	0,125	39,0	31,3	1
1,5	14,8	0,168	29,7	23,9	25,7	20,7	15,1	0,118	30,2	24,3	15,1	0,118	26,1	21,0	1,5
2,5	8,91	0,155	17,8	14,4	15,4	12,5	9,08	0,109	18,2	14,7	9,08	0,109	15,7	12,7	2,5
4	5,57	0,143	11,1	9,08	9,65	7,87	5,68	0,101	11,4	9,21	5,68	0,101	9,85	7,98	4
6	3,71	0,135	7,41	6,10	6,42	5,28	3,78	0,0955	7,56	6,16	3,78	0,0955	6,54	5,34	6
10	2,24	0,119	4,47	3,72	3,87	3,22	2,27	0,0861	4,55	3,73	2,27	0,0861	3,94	3,24	10
16	1,41	0,112	2,82	2,39	2,44	2.07	1,43	0,0817	2,87	2,39	1,43	0,0817	2,48	2,07	16
25	0,889	0,106	1,78	1,55	1,54	1.34	0,907	0,0813	1,81	1,55	0,907	0,0813	1,57	1,34	25
35	0,641	0,101	1,28	1,15	1,11	0,993	0,654	0,0783	1,31	1,14	0,654	0,0783	1,13	0,988	35
50	0,473	0,101	0,947	0,878	0,820	0,760	0,483	0,0779	0,967	0,866	0,483	0,0779	0,838	0,750	50
70	0,328	0,0965	0,656	0,641	0,568	0,555	0,334	0,0751	0,699	0,624	0,334	0,0751	0,579	0,541	70
95	0,236	0,0975	0,473	0,494	0,410	0,428	0,241	0,0762	0.484	0,476	0,241	0,0762	0,419	0,412	95
120	0,188	0,0939	0,375	0,413	0,325	0,358	0,191	0,0740	0,383	0,394	0,191	0,0740	0,332	0,342	120
150	0,153	0,0928	0,306	0,356	0,265	0,308	0,157	0,0745	0,314	0,341	0,157	0,0745	0,272	0,295	150
185	0,123	0,0908	0,246	0,306	0,213	0,265	0,125	0,0742	0,251	0,289	0,125	0,0742	0,217	0,250	185
240	0,0943	0,0902	0,189	0,259	0,163	0,244	0,0966	0,0752	0,193	0,245	0,0966	0,0752	0,167	0,212	240
300	0,0761	0,0895	0,152	0,229	0,132	0,198	0,0780	0,0750	0,156	0,215	0,0780	0,0750	0,135	0,186	300

6 - CADUTA DI TENSIONE

I valori della TAB. 5.1 tratti dalla UNEL 35023-70 sono applicati, con approssimazione accettabile nella pratica, per tutti i tipi di cavi per energia, rigidi, semirigidi o flessibili, isolati con le varie qualità di gomma o di materiale termoplastico aventi temperature caratteristiche sino ad 85 °C e rispondenti alle vigenti Norme CEI per cavi di energia con grado di isolamento sino a 4 compreso.

La caduta di tensione fra l'origine di un impianto e tutti i punti di utilizzazione deve possibilmente essere contenuta entro i valori seguenti, riferiti al valore della $\mathbf{U}_{\mathbf{D}}$ dell'impianto:

3% per cavi illuminazione; 5% per altri casi.

Per un impianto forza motrice, alla messa in servizio di più apparecchi, si può ammettere un $\Delta \mathbf{U}$ del 10%

CALCOLO DELLA CADUTA DI TENSIONE

Esso è definito dalle relazioni:

 $\triangle U = k (R \cos \varphi + X \sin \varphi) \times I \text{ per c.a.}$

dove:

∆U = caduta di tensione in V/km

 $\mathbf{k} = \begin{cases} 1,73 \text{ per linee trifasi} \\ 2 \text{ per linee monofasi} \end{cases}$

 \mathbf{R} = resistenza per fase (Ω/km) alla temperatura di regime

X = reattanza di fase a 50 Hz (Ω/km)

cosφ = fattore di potenza dell'utilizzatore

 $sen \varphi = \sqrt{1-cos^2 \varphi}$

I = corrente di fase in A

Con la formula di cui sopra possono essere calcolate le cadute di tensione anche per valori del $cos\phi$ diversi da quelli (1 e 0,8) previsti in tabella.

Nel caso di corrente continua, moltiplicare per 2 i valori della

resistenza dei conduttori ad 80 ℃.

Per avere la caduta di tensione in volt, occorre moltiplicare i valori della TAB. 5.1 per la corrente, in ampere, e per la lunghezza della linea, in metri, e quindi dividere per 1000.

La caduta di tensione è da intendere tra condutture e condutture, nel caso di corrente continua od alternata monofase; fase e fase, nel caso di corrente alternata trifase. Le norme CEI 64-8/668 ed. I 1984, nonchè le norme IEC 364-4-43, stabiliscono che in caso di corto circuito il dispositivo di protezione della conduttura deve avere un potere di interruzione alme-no uguale alla Ictocto presunta nel punto in cui è installato e deve intervenire con una rapidità tale da non far superare ai cavi o conduttori protetti la max. temperatura ammessa.

Cioè deve essere verificata la seguente condizione:

1)
$$(I^2t) \le k^2S^2$$
 dove:

(I2t): integrale di Joule o energia specifica passante per la durata del cto.cto. in A2. s, lasciata passare dal dispositivo di protezione.

k: fattore dipendente dal tipo di conduttore (Cu o Al) e isolamento (vedere CEI 64-8 Ed. Iª 1984) che per durata di cto.cto. ≤ 5s è:

- 115 per cavi in Cu isolati in PVC (per cavi in Al, k = 74);

 146 per cavi in Cu isolati in gomma etilenpropilenica e polietilene reticolato (per cavi in Al, k = 94);

- 115 per cavi in Cu se vi sono giunzioni o terminazioni saldate a stagno, qualunque sia il tipo di isolante impiegato (per cavi in Al, k = 74);

S: sezione del o dei conduttori da proteggere in mm2;

t. tempo di intervento del dispositivo di protezione che si assume ≤ 5s.

La condizione 1) deve essere soddisfatta qualunque sia il punto della conduttura interessato al corto circuito. In pratica però è sufficiente la verifica nelle condizioni per le quali l'(l2t) lasciato passare è massimo.

Se, come nel nostro caso, la protezione è fatta con interruttori la verifica deve essere fatta oltre che per il punto iniziale della conduttura, caso della Ic¹o c¹o max., anche per il punto terminale caso della Ic¹o c¹o min.
I regoli "F" e "G" permettono di verificare come

gli interruttori di BT, rispettivamente SACE serie

"modul" e "limitor" ed ABB Elettrocondutture, serie "\$250 - \$270 - \$280 - \$650 - \$700 - D\$650 - D\$750-DS850 - DS670 - DS680 - DS770 - DS970" protegga-no i cavi. Questo sia nel caso di cto.cto. nel punto iniziale, definendo in funzione del tipo di interruttore e della sezione del materiale e dell'isolamento del cavo, la Icto cto max. ammissibile per il cavo stesso, (riquadri © dei regoli), sia nel punto terminale, definendo in funzione del tipo di interruttore e del calibro dello sganciatore, la lunghezza max. protetta del cavo stesso (riquadri (A) dei regoli). Nei riquadri (B) vengono definite le lunghezze max. dei cavi in corrispondenza delle quali è assicurata la protezione contro i contatti indiretti (ved. CEI 11-1, 11-II, IEC 364-4-41). Per il calcolo delle lunghezze max. protette è stata usata la seguente formula semplificata:

L max. =
$$\frac{0.8 \times U \times S}{2 \times \rho \times 1.2^{*} \times Im} = 12.5 \cdot \frac{U \times S}{Im}$$
 dove:

U: tensione in V;

0,8: fattore che considera l'abbassamento di U durante il corto circuito;

S sezione del conduttore in mm2**;

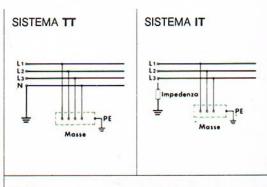
resistività del conduttore alla temperatura D: media di cto.cto. in $\Omega \cdot \text{mm}^2/\text{m}$; (per Cu: $\rho = 1,5 \times 0,018 = 0,027$ per Al: $\rho = 1,5 \times 0,0285 = 0,0427$);

lunghezza del conduttore in m.;

2: fattore che tiene conto che durante il cto.cto. è interessata una lung. = 2 x L;

Icto cto minima (in A) che provoca l'apertura Im: dell'interruttore che nel caso dei valori riportati sui regoli "F" e "G" - riquadro (A) - è stata considerata coincidente con la I magnetica max. dell'interruttore stesso;

fattore di tolleranza previsto dalle norme sul valore reale di Im.


Per conduttori trifasi con neutro o monofasi si applicano i fattori di correzione indicati in ogni singolo riquadro (A) e (B).

- Per quanto riguarda il regolo "G" (quadrante 🙆 il fattore 1,2 non è stato incluso nel calcolo delle max. lunghezze protette in quanto non previsto dalle norme CEI 23-3 fasc. 45 IEC 898.
- Con S > 120 mm² le lunghezze max. protette lette sul regolo "F" (quadrante 🙆 sono state calcolate tenendo conto dei fattori di correzione di cui alla Appendice D della Norma CEI 64-8
- Con p del Cu pari a 0,027

8 - CLASSIFICAZIONE DEI SISTEMI ELETTRICI (IEC 364-3)

I sistemi elettrici vengono così classificati:

SISTEMA TN TN-S TN-C TN-CS

NOTE

TN-S - Conduttore di N e conduttore di protezione PE separati nell'insieme dello schema

Funzione di neutro N e di protezione PE combinati in un solo conduttore nell'insieme dello schema.

Funzione di neutro N e di protezione PE combinati in un solo conduttore in una parte dello schema. TN-CS -П - Masse e conduttori di N collegati separatamente a

IT Solo le masse sono collegate francamente a terra.

DATI DI 1	TARGA [DEGLI IN	TERRUT	ORI AUT	OMATICI	DI PROT	EZIONE				
PORTATA	NOMINAL	E DEGLI IN	TERRUTT	ORI DI PR	OTEZIONE						
magnetoter	magnetotermici, differenziali, magnetotermico differenziali										
(calibri)	In (A)										
0,5	1	2	4	6	10	16					
20	25	32	40	50	63	100	1				
125	160	250	400	630	800	1000					
N. POLI		1	2int-1prot	2 protetti	3	4					
POTERE D	'INTERRU	ZIONE									
magnetoter	mici (kA)	(3)	4,5	6	10	25	0				
CORRENT	I DIFFERE	NZIALI	0,01	0,03	0,3	1 - 3					
NOMINALI	l∆n (A)		istantaneo	istantaneo	istantaneo	reglabile	5				
					o selettivo	in corrente					
						e tempo					